1,726 research outputs found

    Non-overlapping block smoothers for the Stokes equations

    Full text link
    Overlapping block smoothers efficiently damp the error contributions from highly oscillatory components within multigrid methods for the Stokes equations but they are computationally expensive. This paper is concentrated on the development and analysis of new block smoothers for the Stokes equations that are discretized on staggered grids. These smoothers are non-overlapping and therefore desirable due to reduced computational costs. Traditional geometric multigrid methods are based on simple pointwise smoothers. However, the efficiency of multigrid methods for solving more difficult problems such as the Stokes equations lead to computationally more expensive smoothers, e.g., overlapping block smoothers. Non-overlapping smoothers are less expensive, but have been considered less efficient in the literature. In this paper, we develop new non-overlapping smoothers, the so-called triad-wise smoothers, and show their efficiency within multigrid methods to solve the Stokes equations. In addition, we compare overlapping and non-overlapping smoothers by measuring their computational costs and analyzing their behavior by the use of local Fourier analysis.Comment: 17 pages, 34 figure

    Carbon Abundances in Starburst Galaxies of the Local Universe

    Get PDF
    The cosmological origin of carbon, the fourth most abundant element in the Universe, is not well known and matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in a spectral range from 1600 to 10000 \AA\ on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local Universe. We determined chemical abundances through traditional nebular analysis and we used a Markov Chain Monte Carlo (MCMC) method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] vs. [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O vs. O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise intermediate-mass stars dominate the C and N production.Comment: Accepted for publication in Ap

    Sparse Approximate Multifrontal Factorization with Butterfly Compression for High Frequency Wave Equations

    Full text link
    We present a fast and approximate multifrontal solver for large-scale sparse linear systems arising from finite-difference, finite-volume or finite-element discretization of high-frequency wave equations. The proposed solver leverages the butterfly algorithm and its hierarchical matrix extension for compressing and factorizing large frontal matrices via graph-distance guided entry evaluation or randomized matrix-vector multiplication-based schemes. Complexity analysis and numerical experiments demonstrate O(Nlog⁡2N)\mathcal{O}(N\log^2 N) computation and O(N)\mathcal{O}(N) memory complexity when applied to an N×NN\times N sparse system arising from 3D high-frequency Helmholtz and Maxwell problems

    Comparison of Theoretical Starburst Photoionisation Models for Optical Diagnostics

    Get PDF
    We study and compare different examples of stellar evolutionary synthesis input parameters used to produce photoionisation model grids using the MAPPINGS V modelling code. The aim of this study is to (a) explore the systematic effects of various stellar evolutionary synthesis model parameters on the interpretation of emission lines in optical strong-line diagnostic diagrams, (b) characterise the combination of parameters able to reproduce the spread of local galaxies located in the star-forming region in the Sloan Digital Sky Survey, and (c) investigate the emission from extremely metal-poor galaxies using photoionisation models. We explore and compare the stellar input ionising spectrum (stellar population synthesis code [Starburst99, SLUG, BPASS], stellar evolutionary tracks, stellar atmospheres, star-formation history, sampling of the initial mass function) as well as parameters intrinsic to the H II region (metallicity, ionisation parameter, pressure, H II region boundedness). We also perform a comparison of the photoionisation codes MAPPINGS and CLOUDY. On the variations in the ionising spectrum model parameters, we find that the differences in strong emission-line ratios between varying models for a given input model parameter are small, on average ~0.1 dex. An average difference of ~0.1 dex in emission-line ratio is also found between models produced with MAPPINGS and CLOUDY. Large differences between the emission-line ratios are found when comparing intrinsic H II region parameters. We find that low-metallicity galaxies are better explained by a density-bounded H II region and higher pressures better encompass the spread of galaxies at high redshift.Comment: 33 pages, 26 figures, accepted for publication in Ap

    HST/WFC3 Observations of an Off-Nuclear Superbubble in Arp 220

    Full text link
    We present a high spatial resolution optical and infrared study of the circumnuclear region in Arp 220, a late-stage galaxy merger. Narrowband imaging using HST/WFC3 has resolved the previously observed peak in Hα\alpha+[NII] emission into a bubble-shaped feature. This feature measures 1.6" in diameter, or 600 pc, and is only 1" northwest of the western nucleus. The bubble is aligned with the western nucleus and the large-scale outflow axis seen in X-rays. We explore several possibilities for the bubble origin, including a jet or outflow from a hidden active galactic nucleus (AGN), outflows from high levels of star formation within the few hundred pc nuclear gas disk, or an ultraluminous X-ray source. An obscured AGN or high levels of star formation within the inner ∌\sim100 pc of the nuclei are favored based on the alignment of the bubble and energetics arguments.Comment: Accepted for publication in ApJ. 12 pages, 10 figure

    An inosine triphosphate pyrophosphatase safeguards plant nucleic acids from aberrant purine nucleotides

    Get PDF
    In plants, inosine is enzymatically introduced in some tRNAs, but not in other RNAs or DNA. Nonetheless, our data show that RNA and DNA from Arabidopsis thaliana contain (deoxy)inosine, probably derived from nonenzymatic adenosine deamination in nucleic acids and usage of (deoxy)inosine triphosphate (dITP and ITP) during nucleic acid synthesis. We combined biochemical approaches, LC–MS, as well as RNA-Seq to characterize a plant INOSINE TRIPHOSPHATE PYROPHOSPHATASE (ITPA) from A. thaliana, which is conserved in many organisms, and investigated the sources of deaminated purine nucleotides in plants. Inosine triphosphate pyrophosphatase dephosphorylates deaminated nucleoside di- and triphosphates to the respective monophosphates. ITPA loss-of-function causes inosine di- and triphosphate accumulation in vivo and an elevated inosine and deoxyinosine content in RNA and DNA, respectively, as well as salicylic acid (SA) accumulation, early senescence, and upregulation of transcripts associated with immunity and senescence. Cadmium-induced oxidative stress and biochemical inhibition of the INOSINE MONOPHOSPHATE DEHYDROGENASE leads to more IDP and ITP in the wild-type (WT), and this effect is enhanced in itpa mutants, suggesting that ITP originates from ATP deamination and IMP phosphorylation. Inosine triphosphate pyrophosphatase is part of a molecular protection system in plants, preventing the accumulation of (d)ITP and its usage for nucleic acid synthesis
    • 

    corecore